Snow processes in mountain forests: interception modeling for coarse-scale applications (2024)

Andreadis, K.M., Storck, P., and Lettenmaier, D.P.: Modeling snowaccumulation and ablation processes in forested environments, Water Resour.Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009. a

Aston, A.R.: Rainfall interception by eight small trees, J. Hydrol., 42,383–396, 1993. a

Bartlett, P.A. and Verseghy, D.L.: Modified treatment of intercepted snowimproves the simulated forest albedo in the Canadian Land Surface Scheme,Hydrol. Process., 29, 3208–3226, https://doi.org/10.1002/hyp.10431,2015. a, b

Bründl, M., Bartelt, P., Schneebeli, M., and Flühler, H.: Measuring branchdeflection of spruce branches caused by intercepted snow load, Hydrol.Process., 13, 2357–2369, 1999. a

Danish GeodataAgency:https://download.kortforsyningen.dk/content/dhmpunktsky, lastaccess: 22 November 2019. a

Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:GSWP-2: Multimodel analysis and implications for our perception of the landsurface, B. Am. Meteorol. Soc., 87, 1381–1398, 2006. a

Essery, R.: Large-scale simulations of snow albedo masking by forests, Geophys.Res. Lett., 40, 5521–5525, https://doi.org/10.1002/grl.51008, 2013. a

Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stähli, M., Gustafsson,D., Barr, A., Bartlett, P., and Elder, K.: SNOWMIP2: An evaluation of forestsnow process simulations, B. Am. Meteorol. Soc., 90, 1120–1136, 2009. a, b

Essery, R.L., Pomeroy, J.W., Parviainen, J., and Storck, P.: Sublimation ofsnow from coniferous forests in a climate model, J. Climate, 16, 1855–1864,2003. a

Essery, R.L., Bunting, P., Hardy, J., Link, T., Marks, D., Melloh, R.,Pomeroy, J., Rowlands, A., and Rutter, N.: Scaling and parametrization ofclear-sky solar radiation over complex topography, J. Hydrometeorol., 9,228–241, 2008. a

Eysn, L., Hollaus, M., Lindberg, E., Berger, F., Monnet, J.-M., Dalponte, M.,Kobal, M., Pellegrini, M., Lingua, E., Mongus, D., and Pfeifer, N.: ABenchmark of Lidar-Based Single Tree Detection Methods Using HeterogeneousForest Data from the Alpine Space, Forests, 6, 1721–1747, 2015. a

FederalOffice ofTopographySwisstopo:https://www.swisstopo.admin.ch/en/knowledge-facts/geoinformation/lidar-data.html,last access: 22 November 2019. a

Hedstrom, N.R. and Pomeroy, J.W.: Measurements and modelling of snowinterception in the boreal forest, Hydrol. Process., 12, 1611–1625, 1998. a, b, c, d, e, f, g, h, i, j, k, l, m

Helbig, N. and Löwe, H.: Parameterization of the spatially averaged sky viewfactor in complex topography, J. Geophys. Res., 119, 4616–4625,https://doi.org/10.1002/2013JD020892, 2014. a

Helbig, N., Löwe, H., and Lehning, M.: Radiosity approach for the surfaceradiation balance in complex terrain, J. Atmos. Sci., 66, 2900–2912,https://doi.org/10.1175/2009JAS2940.1, 2009. a, b, c, d, e, f

Hellström, R.A.: Forest cover algorithms for estimating meteorologicalforcing in a numerical snow model, Hydrol. Process., 14, 3239–3256, 2000. a

Huerta, M.L., Molotch, N.P., and McPhee, J.: Snowfall interception in adeciduous Nothofa*gus forest and implications for spatial snowpackdistribution, Hydrol. Process., 13, 1818–1834, https://doi.org/10.1002/hyp.13439, 2019. a, b, c, d, e, f

Kaartinen, H., Hyyppä, J., Yu, X., Vastaranta, M., Hyyppä, H., Kukko, A., Holopainen, M., Heipke, C., Hirschmugl, M., Morsdorf, F., Næsset, E., Pitkänen, J., Popescu, S., Solberg, S., Wolf, B. M., and Wu, J.-C.: An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning, Remote Sens., 4, 950–974,https://doi.org/10.3390/rs4040950, 2012. a

Knowles, N., Dettinger, M.D., and Cayan, D.R.: Trends in snowfall versusrainfall in the western United States, J. Climate, 19, 4545–4559, 2006. a

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., c*ntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., sem*nov, V., Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.: ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, 2018. a

LatvianGeospatial InformationAgency:https://www.lgia.gov.lv/lv/Digit%C4%81lais%20virsmas%20modelis,last access: 22 November 2019. a

Lejeune, Y., Dumont, M., Panel, J.-M., Lafaysse, M., Lapalus, P., Le Gac, E., Lesaffre, B., and Morin, S.: 57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m of altitude), Earth Syst. Sci. Data, 11, 71–88, https://doi.org/10.5194/essd-11-71-2019, 2019. a

Lundberg, A., Nakai, Y., Thunehed, H., and Halldin, S.: Snow accumulation inforests from ground and remote-sensing data, Hydrol. Process., 18,1941–1955, https://doi.org/10.1002/hyp.1459, 2004. a, b

Mahat, V. and Tarboton, D.G.: Canopy radiation transmission for an energybalance snowmelt model, Water Resour. Res., 48, 1–16,https://doi.org/10.1029/2011WR010438, 2012. a

Mahat, V. and Tarboton, D.G.: Representation of canopy snow interception,unloading and melt in a parsimonious snowmelt model, Hydrol. Process., 28,6320–6336, https://doi.org/10.1002/hyp.10116, 2014. a

Moeser, D., Roubinek, J., Schleppi, P., Morsdorf, F., and Jonas, T.: Canopyclosure, LAI and radiation transfer from airborne LiDAR synthetic images,Agr. Forest Meteorol., 197, 158–168, 2014. a, b, c, d, e, f

Moeser, D., Morsdorf, F., and Jonas, T.: Novel forest structure metrics fromairborne LiDAR data for improved snow interception estimation, Agr. ForestMeteorol., 208, 40–49, 2015a. a, b

Moeser, D., Staehli, M., and Jonas, T.: Improved snow interception modelingusing canopy parameters derived from airborne LiDAR data, Water Resour.Res., 51, 5041–5059, https://doi.org/10.1002/2014WR016724, 2015b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r

Moeser, D., Mazotti, G., Helbig, N., and Jonas, T.: Representing spatialvariability of forest snow: Implementation of a new interception model, WaterResour. Res., 52, 5041–5059, https://doi.org/10.1002/2015WR017961, 2016. a, b, c, d

Morin, S., Lejeune, Y., Lesaffre, B., Panel, J.-M., Poncet, D., David, P., and Sudul, M.: An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models, Earth Syst. Sci. Data, 4, 13–21, https://doi.org/10.5194/essd-4-13-2012, 2012. a

Morsdorf, F., Kötz, B., Meier, E., Itten, K.I., and Allgöwer, B.:Estimation of LAI and fractional cover from small footprint airborne laserscanning data based on gap fraction, Remote Sens. Environ., 104, 50–61,2006. a

Pomeroy, J.W. and Schmidt, R.A.: The use of fractal geometry in modellingintercepted snow accumulation and sublimation, in: Proc. Eastern SnowConference, vol.50, pp. 1–10, 1993. a, b

Pomeroy, J.W., Parviainen, J., Hedstrom, N., and Gray, D.M.: Coupledmodelling of forest snow interception and sublimation, Hydrol. Process., 12,2317–2337, 1998. a, b

PRISM Climate Group: 30-Year Normals, Oregon State University, available at:http://www.prism.oregonstate.edu/normals/ (created: 7 November 2012;last access: 28 June 2019), 2012. a

Roesch, A. and Roeckner, E.: Assessment of snow cover and surface albedo inthe ECHAM5 general circulation model, J. Clim., 19, 3828–3843, 2006. a

Roesch, A., Wild, M., Gilgen, H., and Ohmura, A.: A new snow cover fractionparameterization for the ECHAM4 GCM, Clim. Dyn., 17, 933–946, 2001. a, b, c, d

Roth, T.R. and Nolin, A.W.: Characterizing maritime snow canopy interceptionin forested mountains, Water Resour. Res., 55, 4564–4581, https://doi.org/10.1029/2018WR024089,2019. a, b, c, d, e, f, g, h, i, j, k, l

Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M.,Verbeke, T., Koller, M., and Maechler, M.: robustbase: Basic RobustStatistics, available at: http://CRAN.R-project.org/package=robustbase (last access: 12 May 2020), rpackage version 0.92-5, 2015. a

Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I.,Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, H., Dutra, E., Elder, K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson, D., Hellström, R., Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V., Kuragina, A., Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova, O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M., Schädler, G., Shmakin, A., Smirnova, T. G., Stähli, M., Stöckli, R., Strasser, U., Su, H., Suzuki, K., Takata, K., Tanaka, K., Thompson, E., Vesala, T., Viterbo, P., Wiltshire, A., Xia, K., Xue, Y., and Yamazaki, T.: Evaluation of forestsnow processes models (SnowMIP2), J. Geophys. Res.-Atmos., 114, D061111,https://doi.org/10.1029/2008JD011063, 2009. a, b, c

Satterlund, D.R. and Haupt, H.F.: Snow catch by conifer crowns, Water Resour.Res., 3, 1035–1039, https://doi.org/10.1029/WR003i004p01035, 1967. a, b, c, d, e

Schmidt, R.A. and Gluns, D.R.: Snowfall interception on branches of threeconifer species, Can. J. For. Res., 21, 1262–1269, 1991. a, b, c, d

Sicart, J.E., Essery, R.L.H., Pomeroy, J.W., Hardy, J., Link, T., andMarks, D.: A sensitivity study of daytime net radiation during snowmelt toforest canopy and atmospheric conditions, J. Hydrometeorol., 5, 774–784,2004. a

Siegel, R. and Howell, J.R.: Thermal Radiation Heat Transfer, HemispherePublishing Corp., 1978. a

Storck, P. and Lettenmaier, D.P.: Measurement of snow interception and canopyeffects on snow accumulation and m elt in a mountainous maritime climate,Oregon, United States, Water Resour. Res., 38, 11, https://doi.org/10.1029/2002WR001281,2002. a, b, c

Suzuki, K. and Nakai, Y.: Canopy snow influence on water and energy balancesin a coniferous forest plantation in Northern Japan, J. Hydrol., 352,126–138, 2008. a

Teich, M. and Tarboton, D.G.: TW Daniels Experimental Forest (TWDEF) Lidar,HydroShare, https://doi.org/10.4211/hs.36f3314971a547bc8bc72dc60d6bd03c, 2016. a

Teich, M., Giunta, A.D., Hagenmuller, P., Bebi, P., Schneebeli, M., andJenkins, M.J.: Effects of bark beetle attacks on forest snowpack andavalanche formation – Implications for protection forest management, For.Ecol. Manage., 438, 186–203, https://doi.org/10.1016/j.foreco.2019.01.052, 2019. a

Varhola, A., Coops, N., Weiler, M., and Moore, R.D.: Forest canopy effects onsnow accumulation and ablation: An integrative review of empirical results,J. Hydrol., 392, 219–233, 2010. a

Vincent, L., Lejeune, Y., M, L., Boone, A., Gac, E.L., Coulaud, C., Freche,G., and Sicart, J.E.: Interception of snowfall by the trees is the mainchallenge for snowpack simulations under forests, in: Proceedings of theInternational Snow Science Workshop (ISSW), Innsbruck, Austria, pp. 705–710,available at: http://arc.lib.montana.edu/snow-science/objects/ISSW2018_O08.4.pdf (last access: 12 May 2020),2018. a, b, c

Webster, C. and Jonas, T.: Influence of canopy shading and snow coverage oneffective albedo in a snow-dominated evergreen needleleaf forest, RemoteSens. Environ., 214, 48–58, 2018. a

Yakir, B.: Nonparametric Tests: Kolmogorov-Smirnov and Peaco*ck, chap.6, pp.103–124, John Wiley & Sons, Ltd, https://doi.org/10.1002/9781118720608.ch6, 2013. a

Snow processes in mountain forests: interception modeling for coarse-scale applications (2024)
Top Articles
Latest Posts
Article information

Author: Roderick King

Last Updated:

Views: 5759

Rating: 4 / 5 (51 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Roderick King

Birthday: 1997-10-09

Address: 3782 Madge Knoll, East Dudley, MA 63913

Phone: +2521695290067

Job: Customer Sales Coordinator

Hobby: Gunsmithing, Embroidery, Parkour, Kitesurfing, Rock climbing, Sand art, Beekeeping

Introduction: My name is Roderick King, I am a cute, splendid, excited, perfect, gentle, funny, vivacious person who loves writing and wants to share my knowledge and understanding with you.