The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas (2024)

1. DeLuca H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004;80:1689s–1696s. doi:10.1093/ajcn/80.6.1689S. [PubMed] [CrossRef] [Google Scholar]

2. Heikkinen S., Vaisanen S., Pehkonen P., Seuter S., Benes V., Carlberg C. Nuclear hormone 1alpha,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res. 2011;39:9181–9193. doi:10.1093/nar/gkr654. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Ramagopalan S.V., Heger A., Berlanga A.J., Maugeri N.J., Lincoln M.R., Burrell A., Handunnetthi L., Handel A.E., Disanto G., Orton S.M., et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res. 2010;20:1352–1360. doi:10.1101/gr.107920.110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Handel A.E., Sandve G.K., Disanto G., Berlanga-Taylor A.J., Gallone G., Hanwell H., Drablos F., Giovannoni G., Ebers G.C., Ramagopalan S.V. Vitamin D receptor ChIP-seq in primary CD4+ cells: Relationship to serum 25-hydroxyvitamin D levels and autoimmune disease. BMC Med. 2013;11:163. doi:10.1186/1741-7015-11-163. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Meyer M.B., Goetsch P.D., Pike J.W. VDR/RXR and TCF4/beta-catenin cistromes in colonic cells of colorectal tumor origin: Impact on c-FOS and c-MYC gene expression. Mol. Endocrinol. 2012;26:37–51. doi:10.1210/me.2011-1109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Prié D., Friedlander G. Reciprocal Control of 1,25-Dihydroxyvitamin D and FGF23 Formation Involving the FGF23/Klotho System. Clin. J. Am. Soc. Nephrol. 2010;5:1717–1722. doi:10.2215/CJN.02680310. [PubMed] [CrossRef] [Google Scholar]

7. Chakraborti C.K. Vitamin D as a promising anticancer agent. Indian J. Pharmacol. 2011;43:113–120. doi:10.4103/0253-7613.77335. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Fleet J.C., DeSmet M., Johnson R., Li Y. Vitamin D and Cancer: A review of molecular mechanisms. Biochem. J. 2012;441:61–76. doi:10.1042/BJ20110744. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Samuel S., Sitrin M.D. Vitamin D’s role in cell proliferation and differentiation. Nutr. Rev. 2008;66:S116–S124. doi:10.1111/j.1753-4887.2008.00094.x. [PubMed] [CrossRef] [Google Scholar]

10. Kumar R., Thompson J.R. The Regulation of Parathyroid Hormone Secretion and Synthesis. J. Am. Soc. Nephrol. JASN. 2011;22:216–224. doi:10.1681/ASN.2010020186. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Pittas A.G., Lau J., Hu F.B., Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007;92:2017–2029. doi:10.1210/jc.2007-0298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Prietl B., Treiber G., Pieber T.R., Amrein K. Vitamin D and Immune Function. Nutrients. 2013;5:2502–2521. doi:10.3390/nu5072502. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Bikle D.D. Vitamin D Metabolism and Function in the Skin. Mol. Cell. Endocrinol. 2011;347:80–89. doi:10.1016/j.mce.2011.05.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Kollias N., Sayre R.M., Zeise L., Chedekel M.R. Photoprotection by melanin. J. Photochem. Photobiol. B Biol. 1991;9:135–160. doi:10.1016/1011-1344(91)80147-A. [PubMed] [CrossRef] [Google Scholar]

15. Clemens T.L., Adams J.S., Henderson S.L., Holick M.F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;1:74–76. doi:10.1016/S0140-6736(82)90214-8. [PubMed] [CrossRef] [Google Scholar]

16. Jablonski N.G., Chaplin G. The evolution of human skin coloration. J. Hum. Evol. 2000;39:57–106. doi:10.1006/jhev.2000.0403. [PubMed] [CrossRef] [Google Scholar]

17. Shane B. Folate Chemistry and Metabolism. In: Bailey L.B., editor. Folate in Health and Disease. 2nd ed. CRC Press; Boca Raton, FL, USA: 2010. [Google Scholar]

18. Off M.K., Steindal A.E., Porojnicu A.C., Juzeniene A., Vorobey A., Johnsson A., Moan J. Ultraviolet photodegradation of folic acid. J. Photochem. Photobiol. B Biol. 2005;80:47–55. doi:10.1016/j.jphotobiol.2005.03.001. [PubMed] [CrossRef] [Google Scholar]

19. Juzeniene A., Thu Tam T.T., Iani V., Moan J. 5-Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers. Free Radic Biol. Med. 2009;47:1199–1204. doi:10.1016/j.freeradbiomed.2009.07.030. [PubMed] [CrossRef] [Google Scholar]

20. Steindal A.H., Tam T.T.T., Lu X.Y., Juzeniene A., Moan J. 5-Methyltetrahydrofolate is photosensitive in the presence of riboflavin. Photochem. Photobiol. Sci. 2008;7:814–818. doi:10.1039/b718907a. [PubMed] [CrossRef] [Google Scholar]

21. Tam T.T.T., Juzeniene A., Steindal A.H., Iani V., Moan J. Photodegradation of 5-methyltetrahydrofolate in the presence of Uroporphyrin. J. Photochem. Photobiol. B Biol. 2009;94:201–204. doi:10.1016/j.jphotobiol.2008.12.003. [PubMed] [CrossRef] [Google Scholar]

22. Webb A.R., DeCosta B.R., Holick M.F. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J. Clin. Endocrinol. Metab. 1989;68:882–887. doi:10.1210/jcem-68-5-882. [PubMed] [CrossRef] [Google Scholar]

23. Elias P.M., Williams M.L. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited. Am. J. Phys. Anthropol. 2016;161:189–207. doi:10.1002/ajpa.23030. [PubMed] [CrossRef] [Google Scholar]

24. Greaves M. Was skin cancer a selective force for black pigmentation in early hominin evolution? Proc. R. Soc. B Biol. Sci. 2014;281 doi:10.1098/rspb.2013.2955. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Jablonski N.G., Chaplin G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA. 2010;107:8962–8968. doi:10.1073/pnas.0914628107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Lerchbaum E., Obermayer-Pietsch B. Vitamin D and fertility: A systematic review. Eur. J. Endocrinol. 2012;166:765–778. doi:10.1530/EJE-11-0984. [PubMed] [CrossRef] [Google Scholar]

27. Tamura T., Picciano M.F. Folate and human reproduction. Am. J. Clin. Nutr. 2006;83:993–1016. doi:10.1093/ajcn/83.5.993. [PubMed] [CrossRef] [Google Scholar]

28. Kinuta K., Tanaka H., Moriwake T., Aya K., Kato S., Seino Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology. 2000;141:1317–1324. doi:10.1210/endo.141.4.7403. [PubMed] [CrossRef] [Google Scholar]

29. Hirai T., Tsujimura A., Ueda T., Fujita K., Matsuoka Y., Takao T., Miyagawa Y., Koike N., Okuyama A. Effect of 1,25-dihydroxyvitamin d on testicular morphology and gene expression in experimental cryptorchid mouse: Testis specific cDNA microarray analysis and potential implication in male infertility. J. Urol. 2009;181:1487–1492. doi:10.1016/j.juro.2008.11.007. [PubMed] [CrossRef] [Google Scholar]

30. Yoshizawa T., Handa Y., Uematsu Y., Takeda S., Sekine K., Yoshihara Y., Kawakami T., Arioka K., Sato H., Uchiyama Y., et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat. Genet. 1997;16:391–396. doi:10.1038/ng0897-391. [PubMed] [CrossRef] [Google Scholar]

31. Pitkin R.M. Folate and neural tube defects. Am. J. Clin. Nutr. 2007;85:285S–288S. doi:10.1093/ajcn/85.1.285S. [PubMed] [CrossRef] [Google Scholar]

32. Boxmeer J.C., Smit M., Utomo E., Romijn J.C., Eijkemans M.J., Lindemans J., Laven J.S., Macklon N.S., Steegers E.A., Steegers-Theunissen R.P. Low folate in seminal plasma is associated with increased sperm DNA damage. Fertil. Steril. 2009;92:548–556. doi:10.1016/j.fertnstert.2008.06.010. [PubMed] [CrossRef] [Google Scholar]

33. Brenner M., Hearing V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008;84:539–549. doi:10.1111/j.1751-1097.2007.00226.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Ravid A., Rubinstein E., Gamady A., Rotem C., Liberman U.A., Koren R. Vitamin D inhibits the activation of stress-activated protein kinases by physiological and environmental stresses in keratinocytes. J. Endocrinol. 2002;173:525–532. doi:10.1677/joe.0.1730525. [PubMed] [CrossRef] [Google Scholar]

35. Lee J., Youn J.I. The photoprotective effect of 1,25-dihydroxyvitamin D3 on ultraviolet light B-induced damage in keratinocyte and its mechanism of action. J. Dermatol. Sci. 1998;18:11–18. doi:10.1016/S0923-1811(98)00015-2. [PubMed] [CrossRef] [Google Scholar]

36. Dixon K.M., Deo S.S., Norman A.W., Bishop J.E., Halliday G.M., Reeve V.E., Mason R.S. In vivo relevance for photoprotection by the vitamin D rapid response pathway. J. Steroid Biochem. Mol. Biol. 2007;103:451–456. doi:10.1016/j.jsbmb.2006.11.016. [PubMed] [CrossRef] [Google Scholar]

37. Mason R.S., Sequeira V.B., Dixon K.M., Gordon-Thomson C., Pobre K., Dilley A., Mizwicki M.T., Norman A.W., Feldman D., Halliday G.M., et al. Photoprotection by 1alpha,25-dihydroxyvitamin D and analogs: Further studies on mechanisms and implications for UV-damage. J. Steroid Biochem. Mol. Biol. 2010;121:164–168. doi:10.1016/j.jsbmb.2010.03.082. [PubMed] [CrossRef] [Google Scholar]

38. Wong G., Gupta R., Dixon K.M., Deo S.S., Choong S.M., Halliday G.M., Bishop J.E., Ishizuka S., Norman A.W., Posner G.H., et al. 1,25-Dihydroxyvitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. J. Steroid Biochem. Mol. Biol. 2004;89–90:567–570. doi:10.1016/j.jsbmb.2004.03.072. [PubMed] [CrossRef] [Google Scholar]

39. Gupta R., Dixon K.M., Deo S.S., Holliday C.J., Slater M., Halliday G.M., Reeve V.E., Mason R.S. Photoprotection by 1,25 dihydroxyvitamin D3 is associated with an increase in p53 and a decrease in nitric oxide products. J. Investig. Dermatol. 2007;127:707–715. doi:10.1038/sj.jid.5700597. [PubMed] [CrossRef] [Google Scholar]

40. Williams J.D., Jacobson M.K. Photobiological Implications of Folate Depletion and Repletion in Cultured Human Keratinocytes. J. Photochem. Photobiol. B Biol. 2010;99:49–61. doi:10.1016/j.jphotobiol.2010.02.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Williams J.D., Jacobson E.L., Kim H., Kim M., Jacobson M.K. Folate in skin cancer prevention. Subcell. Biochem. 2012;56:181–197. doi:10.1007/978-94-007-2199-9_10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Jablonski N.G., Chaplin G. Skin cancer was not a potent selective force in the evolution of protective pigmentation in early hominins. Proc. R. Soc. B Biol. Sci. 2014;281:20140517. doi:10.1098/rspb.2014.0517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Apalla Z., Lallas A., Sotiriou E., Lazaridou E., Ioannides D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept. 2017;7:1–6. doi:10.5826/dpc.0702a01. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Diamond J. Geography and skin colour. Nature. 2005;435:283. doi:10.1038/435283a. [PubMed] [CrossRef] [Google Scholar]

45. Hawkes K. Grandmothers and the evolution of human longevity. Am. J. Hum. Biol. 2003;15:380–400. doi:10.1002/ajhb.10156. [PubMed] [CrossRef] [Google Scholar]

46. Biniek K., Levi K., Dauskardt R.H. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. USA. 2012;109:17111–17116. doi:10.1073/pnas.1206851109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Gunathilake R., Schurer N.Y., Shoo B.A., Celli A., Hachem J.P., Crumrine D., Sirimanna G., Feingold K.R., Mauro T.M., Elias P.M. pH-regulated mechanisms account for pigment-type differences in epidermal barrier function. J. Investig. Dermatol. 2009;129:1719–1729. doi:10.1038/jid.2008.442. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Mostafa W.Z., Hegazy R.A. Vitamin D and the skin: Focus on a complex relationship: A review. J. Adv. Res. 2015;6:793–804. doi:10.1016/j.jare.2014.01.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Oda Y., Uchida Y., Moradian S., Crumrine D., Elias P.M., Bikle D.D. Vitamin D receptor and coactivators SRC2 and 3 regulate epidermis-specific sphingolipid production and permeability barrier formation. J. Investig. Dermatol. 2009;129:1367–1378. doi:10.1038/jid.2008.380. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Schauber J., Gallo R.L. The vitamin D pathway: A new target for control of the skin’s immune response? Exp. Dermatol. 2008;17:633–639. doi:10.1111/j.1600-0625.2008.00768.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Courtemanche C., Elson-Schwab I., Mashiyama S.T., Kerry N., Ames B.N. Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro. J. Immunol. 2004;173:3186–3192. doi:10.4049/jimmunol.173.5.3186. [PubMed] [CrossRef] [Google Scholar]

52. Duthie S.J., Horgan G., de Roos B., Rucklidge G., Reid M., Duncan G., Pirie L., Basten G.P., Powers H.J. Blood folate status and expression of proteins involved in immune function, inflammation, and coagulation: Biochemical and proteomic changes in the plasma of humans in response to long-term synthetic folic acid supplementation. J. Proteome Res. 2010;9:1941–1950. doi:10.1021/pr901103n. [PubMed] [CrossRef] [Google Scholar]

53. Zhang M., Wen J., Wang X., Xiao C. Highdose folic acid improves endothelial function by increasing tetrahydrobiopterin and decreasing hom*ocysteine levels. Mol. Med. Rep. 2014;10:1609–1613. doi:10.3892/mmr.2014.2332. [PubMed] [CrossRef] [Google Scholar]

54. Chalupsky K., Kračun D., Kanchev I., Bertram K., Görlach A. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase. Antioxid. Redox Sign. 2015;23:1076–1091. doi:10.1089/ars.2015.6329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Chalupsky K., Cai H. Endothelial dihydrofolate reductase: Critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA. 2005;102:9056–9061. doi:10.1073/pnas.0409594102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Antoniades C., Shirodaria C., Warrick N., Cai S., de Bono J., Lee J., Leeson P., Neubauer S., Ratnatunga C., Pillai R., et al. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: Effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation. 2006;114:1193–1201. doi:10.1161/CIRCULATIONAHA.106.612325. [PubMed] [CrossRef] [Google Scholar]

57. Slominski A., Zmijewski M., Pawelek J. L-tyrosine and L-DOPA as hormone-like regulators of melanocytes functions. Pigm. Cell Melanoma Res. 2012;25:14–27. doi:10.1111/j.1755-148X.2011.00898.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Morrison S.F. Central control of body temperature. F1000Research. 2016;5 doi:10.12688/f1000research.7958.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Mata-Greenwood E., Chen D.-B. Racial Differences in Nitric Oxide-Dependent Vasorelaxation. Reprod. Sci. 2008;15:9–25. doi:10.1177/1933719107312160. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Andrukhova O., Slavic S., Zeitz U., Riesen S.C., Heppelmann M.S., Ambrisko T.D., Markovic M., Kuebler W.M., Erben R.G. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol. Endocrinol. 2014;28:53–64. doi:10.1210/me.2013-1252. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Ajabshir S., Asif A., Nayer A. The effects of vitamin D on the renin-angiotensin system. J. Nephropathol. 2014;3:41–43. doi:10.12860/jnp.2014.09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. D’Mello S.A.N., Finlay G.J., Baguley B.C., Askarian-Amiri M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016;17:1144. doi:10.3390/ijms17071144. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Wong K.E., Kong J., Zhang W., Szeto F.L., Ye H., Deb D.K., Brady M.J., Li Y.C. Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J. Biol. Chem. 2011;286:33804–33810. doi:10.1074/jbc.M111.257568. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Wong K.E., Szeto F.L., Zhang W., Ye H., Kong J., Zhang Z., Sun X.J., Li Y.C. Involvement of the vitamin D receptor in energy metabolism: Regulation of uncoupling proteins. Am. J. Physiol. Endocrinol. Metab. 2009;296:E820–E828. doi:10.1152/ajpendo.90763.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Chang E., Kim Y. Vitamin D Insufficiency Exacerbates Adipose Tissue Macrophage Infiltration and Decreases AMPK/SIRT1 Activity in Obese Rats. Nutrients. 2017;9:338. doi:10.3390/nu9040338. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Post P.W., Daniels F., Jr., Binford R.T., Jr. Cold injury and the evolution of “white” skin. Hum. Biol. 1975;47:65–80. [PubMed] [Google Scholar]

67. Maley M.J., Eglin C.M., House J.R., Tipton M.J. The effect of ethnicity on the vascular responses to cold exposure of the extremities. Eur. J. Appl. Physiol. 2014;114:2369–2379. doi:10.1007/s00421-014-2962-2. [PubMed] [CrossRef] [Google Scholar]

68. Burgess J.E., Macfarlane F. Retrospective analysis of the ethnic origins of male British army soldiers with peripheral cold weather injury. J. R. Army Med. Corps. 2009;155:11–15. doi:10.1136/jramc-155-01-04. [PubMed] [CrossRef] [Google Scholar]

69. Branda R.F., Eaton J.W. Skin color and nutrient photolysis: An evolutionary hypothesis. Science. 1978;201:625–626. doi:10.1126/science.675247. [PubMed] [CrossRef] [Google Scholar]

70. Jablonski N.G. The Evolution of Human Skin and Skin Color. Annu. Rev. Anthropol. 2004;33:585–623. doi:10.1146/annurev.anthro.33.070203.143955. [CrossRef] [Google Scholar]

71. Zmuda J.M., Cauley J.A., Ferrell R.E. Molecular epidemiology of vitamin D receptor gene variants. Epidemiol. Rev. 2000;22:203–217. doi:10.1093/oxfordjournals.epirev.a018033. [PubMed] [CrossRef] [Google Scholar]

72. Fang Y., van Meurs Joyce B.J., d’Alesio A., Jhamai M., Zhao H., Rivadeneira F., Hofman A., van Leeuwen Johannes P.T., Jehan F., Pols Huibert A.P., et al. Promoter and 3′-Untranslated-Region Haplotypes in the Vitamin D Receptor Gene Predispose to Osteoporotic Fracture: The Rotterdam Study. Am. J. Hum. Genet. 2005;77:807–823. doi:10.1086/497438. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Tiosano D., Audi L., Climer S., Zhang W., Templeton A.R., Fernández-Cancio M., Gershoni-Baruch R., Sánchez-Muro J.M., El Kholy M., Hochberg Z. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes. G3 Genes Genomes Genet. 2016;6:1251–1266. doi:10.1534/g3.115.026773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Luco*ck M., Jones P., Martin C., Beckett E., Yates Z., Furst J., Veysey M. Vitamin D: Beyond Metabolism. J. Evid. Based Complement. Altern. Med. 2015;20:310–322. doi:10.1177/2156587215580491. [PubMed] [CrossRef] [Google Scholar]

75. Shimada A., Kanazawa Y., Motohashi Y., Yamada S., Maruyama T., Ikegami H., Awata T., Kawasaki E., Kobayashi T., Nakanishi K., et al. Evidence for association between vitamin D receptor BsmI polymorphism and type 1 diabetes in Japanese. J. Autoimmun. 2008;30:207–211. doi:10.1016/j.jaut.2007.09.002. [PubMed] [CrossRef] [Google Scholar]

76. van Etten E., Verlinden L., Giulietti A., Ramos-Lopez E., Branisteanu D.D., Ferreira G.B., Overbergh L., Verstuyf A., Bouillon R., Roep B.O., et al. The vitamin D receptor gene FokI polymorphism: Functional impact on the immune system. Eur. J. Immunol. 2007;37:395–405. doi:10.1002/eji.200636043. [PubMed] [CrossRef] [Google Scholar]

77. Agliardi C., Guerini F.R., Saresella M., Caputo D., Leone M.A., Zanzottera M., Bolognesi E., Marventano I., Barizzone N., Fasano M.E., et al. Vitamin D receptor (VDR) gene SNPs influence VDR expression and modulate protection from multiple sclerosis in HLA-DRB1*15-positive individuals. Brain Behav. Immun. 2011;25:1460–1467. doi:10.1016/j.bbi.2011.05.015. [PubMed] [CrossRef] [Google Scholar]

78. Li K., Shi Q., Yang L., Li X., Liu L., Wang L., Li Q., Wang G., Li C.Y., Gao T.W. The association of vitamin D receptor gene polymorphisms and serum 25-hydroxyvitamin D levels with generalized vitiligo. Br. J. Dermatol. 2012;167:815–821. doi:10.1111/j.1365-2133.2012.11132.x. [PubMed] [CrossRef] [Google Scholar]

79. Uitterlinden A.G., Fang Y., van Meurs J.B.J., Pols H.A.P., van Leeuwen J.P.T.M. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338:143–156. doi:10.1016/j.gene.2004.05.014. [PubMed] [CrossRef] [Google Scholar]

80. Berry D., Hypponen E. Determinants of vitamin D status: Focus on genetic variations. Curr. Opin. Nephrol. Hypertens. 2011;20:331–336. doi:10.1097/MNH.0b013e328346d6ba. [PubMed] [CrossRef] [Google Scholar]

81. Nissen J., Vogel U., Ravn-Haren G., Andersen E.W., Madsen K.H., Nexo B.A., Andersen R., Mejborn H., Bjerrum P.J., Rasmussen L.B., et al. Common variants in CYP2R1 and GC genes are both determinants of serum 25-hydroxyvitamin D concentrations after UVB irradiation and after consumption of vitamin D(3)-fortified bread and milk during winter in Denmark. Am. J. Clin. Nutr. 2015;101:218–227. doi:10.3945/ajcn.114.092148. [PubMed] [CrossRef] [Google Scholar]

82. Powe C.E., Evans M.K., Wenger J., Zonderman A.B., Berg A.H., Nalls M., Tamez H., Zhang D., Bhan I., Karumanchi S.A., et al. Vitamin D–Binding Protein and Vitamin D Status of Black Americans and White Americans. N. Engl. J. Med. 2013;369:1991–2000. doi:10.1056/NEJMoa1306357. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Fox J.T., Shin W.K., Caudill M.A., Stover P.J. A UV-responsive internal ribosome entry site enhances serine hydroxymethyltransferase 1 expression for DNA damage repair. J. Biol. Chem. 2009;284:31097–31108. doi:10.1074/jbc.M109.015800. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Yafei W., Lijun P., Jinfeng W., Xiaoying Z. Is the prevalence of MTHFR C677T polymorphism associated with ultraviolet radiation in Eurasia? J. Hum. Genet. 2012;57:780–786. doi:10.1038/jhg.2012.113. [PubMed] [CrossRef] [Google Scholar]

85. Jones P., Beckett E., Yates Z., Veysey M., Luco*ck M. Converging Evolutionary, Environmental and Clinical Ideas on Folate Metabolism. ERHM. 2016;1 doi:10.14218/ERHM.2016.00003b. [CrossRef] [Google Scholar]

86. Jones P., Luco*ck M., Veysey M., Jablonski N., Chaplin G., Beckett E. Frequency of folate-related polymorphisms varies by skin pigmentation. Am. J. Hum. Biol. 2018;30:e23079. doi:10.1002/ajhb.23079. [PubMed] [CrossRef] [Google Scholar]

87. Chaplin G. Geographic distribution of environmental factors influencing human skin coloration. Am. J. Phys. Anthropol. 2004;125:292–302. doi:10.1002/ajpa.10263. [PubMed] [CrossRef] [Google Scholar]

88. Wang H., Chen W., Li D., Yin X., Zhang X., Olsen N., Zheng S.G. Vitamin D and Chronic Diseases. Aging Dis. 2017;8:346–353. doi:10.14336/AD.2016.1021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Stover P.J. Physiology of folate and vitamin B12 in health and disease. Nutr. Rev. 2004;62:S3–S12; discussion S13. doi:10.1111/j.1753-4887.2004.tb00070.x. [PubMed] [CrossRef] [Google Scholar]

90. Autier P., Boniol M., Pizot C., Mullie P. Vitamin D status and ill health: A systematic review. Lancet Diabetes Endocrinol. 2014;2:76–89. doi:10.1016/S2213-8587(13)70165-7. [PubMed] [CrossRef] [Google Scholar]

91. Autier P., Mullie P., Macacu A., Dragomir M., Boniol M., Coppens K., Pizot C., Boniol M. Effect of vitamin D supplementation on non-skeletal disorders: A systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5:986–1004. doi:10.1016/S2213-8587(17)30357-1. [PubMed] [CrossRef] [Google Scholar]

92. Marti-Soler H., Gonseth S., Gubelmann C., Stringhini S., Bovet P., Chen P.C., Wojtyniak B., Paccaud F., Tsai D.H., Zdrojewski T., et al. Seasonal variation of overall and cardiovascular mortality: A study in 19 countries from different geographic locations. PLoS ONE. 2014;9:e113500. doi:10.1371/journal.pone.0113500. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Martins D., Wolf M., Pan D., Zadshir A., Tareen N., Thadhani R. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin d in the united states: Data from the third national health and nutrition examination survey. Arch. Intern. Med. 2007;167:1159–1165. doi:10.1001/archinte.167.11.1159. [PubMed] [CrossRef] [Google Scholar]

94. Mohr S.B., Garland C.F., Gorham E.D., Garland F.C. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide. Diabetologia. 2008;51:1391–1398. doi:10.1007/s00125-008-1061-5. [PubMed] [CrossRef] [Google Scholar]

95. Lim H.S., Roychoudhuri R., Peto J., Schwartz G., Baade P., Moller H. Cancer survival is dependent on season of diagnosis and sunlight exposure. Int. J. Cancer. 2006;119:1530–1536. doi:10.1002/ijc.22052. [PubMed] [CrossRef] [Google Scholar]

96. Ho A., Gabriel A., Bhatnagar A., Etienne D., Loukas M. Seasonality pattern of breast, colorectal, and prostate cancer is dependent on latitude. Med. Sci. Monit. 2014;20:818–824. doi:10.12659/msm.890062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Gardner M.J., Lee J.A.H. Seasonal Variation in Leukaemia Incidence. Br. Med. J. 1964;1:57. doi:10.1136/bmj.1.5374.57. [CrossRef] [Google Scholar]

98. Lee J.A. Seasonal variation in the clinical onset of leukaemia in young people. Br. Med. J. 1962;1:1737–1738. doi:10.1136/bmj.1.5294.1737. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas (2024)
Top Articles
Latest Posts
Article information

Author: Margart Wisoky

Last Updated:

Views: 5909

Rating: 4.8 / 5 (78 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Margart Wisoky

Birthday: 1993-05-13

Address: 2113 Abernathy Knoll, New Tamerafurt, CT 66893-2169

Phone: +25815234346805

Job: Central Developer

Hobby: Machining, Pottery, Rafting, Cosplaying, Jogging, Taekwondo, Scouting

Introduction: My name is Margart Wisoky, I am a gorgeous, shiny, successful, beautiful, adventurous, excited, pleasant person who loves writing and wants to share my knowledge and understanding with you.